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1.0 INTRODUCTION

We address here methods for triangulating orbital frame photography
with rigorous accounting for spacecraft dynamics. Triangulation of
ornbital photography was established as an important survey tool, by the
extensive mapping of the Moon accomplished by triangulation of orbital
photography (beginning with the Lunar orbitor photography and continuing
through the Appolo missions), and by more recent extra-terrestial and
terrestial applications and studies.

Several issues need to be focused to appreciate the developments
herein. Dynamical models of the camera bearing vehicle's motion, from
one view, are unnecessary. As has been the tradition in triangulation
of aerial photography (and mostly, orbital photography), it is possible
to construct workable triangulation algorithms based solely upon prin-
ciples of geometric optics. Perhaps the first question a skeptic might
raise is: '"Why clutter the (otherwise algebraic equation) scene with
differential equations that must be solved numerically?" Enforcement of
dynamical constraints imposes a physical truth (to an essentially negli-
gible degree of approximation, the camera motion {4 governed exactly by
Newton's laws of motion) - as a direct consequence of introducing
dynamical constraints, one whould expect to more closely recover the
true camera position. The number of unknown parameters subject to
differential correction is usually reduced as a consequence of intro-
ducing dynamical constraints; thus the normal equations have corres-
pondingly reduced dimensions. Thus computer storage, run time, and
precision considerations generally favor the dynamically constrained

approach., The use of a dynamical model in orbital triangulation allows
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one to restrucuture the triangulation process as an "iterative, extented
Kalman estimation algorithm" with most significant computational ad-
vantages.

The above comments are fully supported by the results presented

herein.

2.0 DYNAMICALLY CONSTRAINED TRIANGULATION: SUMMARY OF BASIC EQUATIONS
2.1 Colinearity Equations
In the process of satellite photogrammetric triangulation, the

earth fixed object space coordinates of various earth surface features
can be deduced from satellite photograph coordinates of the images of
those features. The fundamental mathematical transformation central to
this process is based solely on the principles of geometric optics and
can be deduced from the geométry shown in Figures 1 and 2. This trans-

formation (the colinearity equations) can be written [1] as

p— -
P o L931(Xp—xc) + C32(Yp-Yc) & C33(ZP-ZCZJ

[ ]
o A CZI(KP—XC) + C22(YP-YC) + 023(ZP-ZC) (ab)
p Yo __c3l(xp-xc) + C32(YP—YC) ¥ c33(zp—zc)_‘

Equations (1) project the position of a point located at object coordi-

nates (Xp, ¥ Zp) into its 4mage plane coordinates (xp, yp) for a

P
camera with principal point offset (xo, yo) and focal length f. The

perspective center of the camera is located at object space coordinates

(Xc, Yc’ Zc)' The Amage space (x,y,z) axes are oriented relative to the

obfect space (X,Y,Z) axes by the direction cosines C L,m=1,2,3.

2m;

Equations (1) can be written functionally as
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Figure 1 Co-Linearity of Perspective Centev,
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xp = F(xp’Yp’zp’xc’Yc’zc’Clmj’xo’f) s

y = G(XP,YP,Z ’xc’Yc’Zx’Clmj’yo’f)'

P P

If several points are considered in each of n photographs, Equations (1)
and (2) can be doubly subscripted to denote the equations corresponding
to the ith point in the jth photograph as

X = FX. Y JBAUY Y ,Zc ’sz X o f

e, g, g )
Py Py Tty Sy iy e % 3

(3)
y, =600 ¥ .2 X Y2 .G .y .E1).

3 k] ’ b b
pij Pi p:[. Pi Cj Cj Cj R.mj j

Equatious (3) can be segregated into subsets depending on whether or not
the particular point is a controf point (i.e. one for which there exists
apriori knowledge of its object space coordinates). Other points having
distinctly measurable image plane coordinates in two or more photographs
are unknown and are called pass points. Depending upon the number of
photographs in a strip, the number of strips with sidelap, the number
and distribution of control points, the number of pass points and the
manner in which they are shared by adjacent photographs, an intimidating
variety of observation equations of the form (3) can be defined in
practical applications. It is not uncommon to encounter several thou-
sand such nonlinear equations containing several hundred unknowns. An
obvious computational burden is associated with the least squares
solution of this class of problems.

In the traditional approach to this problem, the camera center
coordinates (ch,ch,ch) and three camera orientation angles (Qj’oj’wj)
for each photograph (it is possible to replace the direction cosines
sz; as functions of three orientation angles), as well as the pass

point coordinates have been treated as independent unknowns. The

introduction of orbital dynamical constraints, conceived by Brown [2,3]




the elimination of the 3n (n = number of photographs) camera center
coordinates in favor of 6 osculating orbital elements. One purpose of
this work is to carry the incorporation of dynamical comstraints to its
logical conclusion through rigorous satisfaction of the satellite
equations of rotational motion. This process allows the further re-
duction of unknowns from 3n orientation angles to 6 osculating attitude
elements or constants of the rotational motion.

2.2 Orbital Dynamical Constraints

The essence of orbit constrained photogrammetry is the recognition
that the camera exposure stations along a given strip of n photographs

are dynamically constrained according to

ch = Xc(tj,cl,cz,...,c6)
ch = Yc(tj,cl,cz,...,c6) = 1,25.5.,0, (4)
ch = Zc(tj’cl’CZ""’CG)

where Equations (4) are functional representations of the solution of
the spacecraft's translational equations of motion. The 6 constants
(cl,...,c6) can be any set of initial conditions or osculating orbital
elements which uniquely define the orbit. The least squares solution of
the photogrammetry problem is modified to include the dynamical con-
straints as follows: Current estimates of C13Cgseeey Cp are used in

6

Equations (4) to compute xc ,Yc ,Z at each photograph exposure time

3053 258

the resulting estimates of camera exposure coordinates are used in

[

tj,

Equations (3) together with the other parameter estimates (Xp ,Yp ,Zp s
R L |

$.,0.,Y,,x »Y, ,f.) to determine current computed values of x y

J’J’j’oj pij’p1J

which are in turn dirrerenced from the corresponding observed values to

find the current residual vector. The partial derivatives of the

dad
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observation Equations (3) with respect to the orbital elements, o
CoseresCy (the elements of the "A" matrix) are determined by the chain
differentiation rule applied to Equations (3) and (4). For example

X X oY 9Z

LTS SR ERE . TN e

acl axc. acl avc acl 3Zc‘ acl

3 h| ]

The partial derivatives with respect to the other parameters are iden-
tical in form to the corresponding equations for unconstrained photo-
grammetry. Depending on problem requirements, various specific forms of
Equations (4) are available and the corresponding partial derivatives
readily obtainable. Further discussion of orbital constraints is found
in the work of Brown [2,3], Light [4], Hartwell [5], and Blanton and
Junkins [8].

As an alternative to recovery of the orbit simultaneously with the
triangulation process, one can use tracking data to recover the orbit
apriond, to within small clock biases, and often acceptable precision.
The photomeasurements, in most cases will provide only marginal improve-
ment in the orbit resolution due to the recent advances made in tracking
systems for orbit determination. In any event, the triangulation should
be dynamically constrained in the sense that the sequence of exposures
lie along a dynamical path.

2.2 Rotational Dynamical Constraints

The incorporation of rotational dynamical constraints is, in con-
cept, very analogous to introduction orbital constraints. The details,
however, are somewhat more complicated. The direction cosines Ckm
contained in Equation (1) can be written as functions of three angles
orienting the camera {c} axes relative to the earth {e} axes as

{c} = [Cl{e} (5)

where
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L et il o

cy sy 0 c6 0 -s8 1 0 0
ce ce ce ce
w s *
[c] swce cwce 0 0 1 0 0 C¢ce s¢ce (6)
0 0 1 sece 0 c9ce -s¢ce c¢ce

This is the ciassical approach; each set of three orientation angles (for
each of n exposures) are treated as n independent sets of three unknowns
in the triangulation process.

Perhaps the most obvious approach (to introduce rotational dynamical
constraints) is to derive a set of differential equations describing the
(¢ce’ece’wce) angles and recover the six initial conditions (on these
three angles and their first time derivatives) in lieu to treating the
3n angles as independent unknowns. Several factors should be considered,
however. First, rotational dynamics is most naturally approached by
viewing the motion from a non-rotating reference frame rather than an
earth-fixed frame. Second, care should be taken to avoid the singularity
that exists for certain orientations [ece =+ w/2, in Eqn. (6)] for any
choice of orientation angles. One should allow efficient advantage to
be taken of on-board angular motion measurements (e.g. rate gyros, star
sensors, éun sensors, etc.). In view of these considerations, we
introduce (in lieu of ¢ce’ece’¢ce) the angles (¢co’eco’wco) orienting the
camera relative to an "orbiting" frame which maintains axes in the local

radial, transverse, and normal directions so that (see Appendix 2)

(c] = [CN] = [CO1(00'][0'N](EN]T (7)
where
cwco swco Q Ceco 0 -seco 1 0 0
[co] = ) JORC 0 0 i 0 0 b %o (8)
0 0 1 s@ 0 cb 0 -s¢ co
co co co co

*
For rotational compaction, we use "c¢" for '"cosine" and "s" for "sine".
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where

IaB = spacecraft moments of inertia about mass center with axes
oriented parallel to image plane axes.

' bx,w ,wz} = spacecraft angular velocity, comp.nents along camera
y image plane axes

i ﬂk,L ,Lz} = effective external torque acting on the spacecraft;
y components taken about mass center with axes parallel
to camera image plane axes.

w
X gx
w = |CG w
y L gy
w w
z gz}
(ng’wgy’wgz) = angular velocity components along rata gyro's three

orthogonal axes.
[CG] = assumed constant 3 x 3 interlock direction cosine wicrix,
orienting the camera axes with respect to the rate gyro
axes,
In the event that the particular spacecraft departs significantly from the
rigid body assumption (e.g., significant internal moving masses, vibration
of flexible appendages), additional forcing terms will appear on the RHS
of Eqn. (13), and one additional, coupled, differential equation for each
such mechanical degree of freedom must be written. The kinematical
Equation (13), however, holds rigorously for the motion of the camera axes,
regardless of what torques are present and regardless of departures of
the actual body model from the rigid body assumption. To employ Eqns. (12)
as the starting point for modeling rotational dynamics requires excellent
mathematical models for the actual torques (Lx,Ly,Lz) present and for
any significant departures from the rigid body assumption. This viewpoint
was pursued initially under this contract and yielded in the results
published in References 7 and 8 (abstracted below in section 3.1).
The fact that Eqn. (13) is rigorously valid (regardless of the torque

history and actual body flexibility) and since true angular velocity can be

measured (by conventional rate gyros) motivates a direct nate {ntegration




approach to imposing the rotational motion constraint. This approach
leads one to consider the wisdom of bypassing the necessity of modeling
the spacecraft flexibility and torque history by directly integrating
Equations (13). This latter viewpoint has been investigated during this
research project and does prove to be the most attractive option.

The orthogonal axes of the rate gyro package generally has some
orientation other than the camera axes, thus we must account for the

gyro-to-camera interlock rotation as

[ S

w

X gx
= [c6 14
LS [cG] ti»gy (14)
w
Z gz

where [CG] is a nominally constant, 3 x 3 interlock direction cosine

matrix, and the measured angular rates are

w w bx) v
gx gx X
= ) + b + v 15
“gx gy * y CE
w bz v
gz gz z
{Measured} = {Truel} + {Bias} +{Measurement}

Noise

~

If one substitutes the raw data (w__,w ,w
gx gy 8z

(13) and integrates to determine the angular rate history, the effects of

~

) through (14) directly into

the uncompensated rate biases {bx,by,bz} and noise (vx,vy,vz) will
typically result in unacceptably rapid divergence of the integrated orien-
tation history from the true orientation history. The results of numerical
experimentation with typical noise levels (1 arc sec/sec) and bias values
led us to conclude that the measured rates should be passed through a

noise pre-filter (section 4) to obtain a filtered angular velocity

history:




3
3y (€]

where we need

& 9

%, [co]

a6
c

Y

The partials

=[—

)
ap

(t)

CcO

Bpi

o (0
api

(t)

co
Bpi

| 0

sy

co

cy

co

sy

co

cy

co

[col] [00'] [0'N] [EN]®

(18)
0 o0 0
0 -s¢co cé
a b
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0 c¢co s¢
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Bpi

matrix differential equations

¢(t,to)
and

¥ie,t )
where

o(t,co)

W(t,to)
3x3
[F(t)] =

3x3
[B(t)]

F(t)¢(t,to)

F(t)W(t,to) + B(t)

o(to,to) =

SO+
OO
= OO

s w(to’to) = [0]

306 (),6__(£),¥  (6)]

BTo__(c,0,8 (60,0 5T

8[¢co(t°),6co(t).wco(t)]
[a[bi,bz,b3] ]

d[right hand side of Eqns. (17)]

ale  (€),8 (£),¥ ,(t)]

a[b,,b

_ d[right hand side of Eqns. (17))

2’b3]

TR

] are obtained by integrating the

(20a)

(20b)

(21a)

(21b)

(22a)

(22b)

co
co—
co

co —

co

e

co
(19)

The partials (22) are taken by direct differentiation of Equations (17).




2.4 OBSERVATION EQUATIONS FOR DYNAMICALLY CONSTRAINED PHOTOGRAMMETRIC
ADJUSTMENTS

2.4.1 Basic Notatioms

Linearization of the colinearity equations (1) leads to the matrix

LW T S TS T

equation¥*
AY = A AX + E (23)
where AY = mxl matrix of "measured minus computed" residuals of xp .
) ij
y or
, Py
¥
i Ax
Py
P11
Ax
Pas
Ay
« P21
{aY} = (24)
Ax
pij
Ay
pij

se—

[A] = [%%] = m x n matrix (m > n) of partial derivatives of the (xp
ij
yp ) with respect to the elements of the vector {X} of
ij
unknown parameters, evaluated with the currect best estimates

s

of X. (25)

{A0X} = an n x 1 matrix of desired correctisns to the parameter
vector {X}
{E} = AY - A AX = an m x 1 matrix of "errors after the solution"

associated with any choice for AX. (26)

*
Subscript ij denotes ith point measured on the jth photograph.

12




The least squares solution for Ax minimizes ETW E and is well known to be
the normal equations AX = (ATWA)-IATHAY where W is a positive definite
weight matrix.
For traditional (unconstrained) photogrammetric adjustments, the
{X} vector can be partitioned as
{xyzc}

i {x} = {{¢0y} (27)

{XYZP}

where

{Xyzc} = < [ = matrix of camera exposure (28)
X stations' coordinates

{¢6y}= é = matrix of "1-2-3" camera orientation angles
—-—— (depending upon the option used, these may (29)
6 relate camera axes to the instantaneous radial
i transverse, and normal directions; or directly
0 to the earth-fixed axes).

13
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{XYzp}= (| '\ = matrix of pass points' coordinates (30)

and the matrix of partial derivatives can be similarly partitioned as

[A) = [[AxYZC] [A¢6y] [AXYZP]] (31) !

where the submatrices are

ML Y X R e R aE peadd
(AXYZC) = Pay -Pag o Py P T B < ) (32)
a(xc 5 Yc 5 Zc 3 Xc 5 Yc 5 Zc T Xc " Yc > Zc TN
e R S e R M e h
'S(X D o) T teset X ' B el
P11 Pip Py P Pis Pyy
(A000] = 150, 8y, ¥,5 8p0 Ogs Vgicees Ogs Og0 Viiees) .y
[y 1 i L
and
X , Y Al TR CHEREST B TR I (i P
P P ) P P )
& 13 M ¥y ¥y ii  Pij
(AXYzP] B T L E 20 ik g e B s E 1 sesd (34)
W Sy By ¥s O Py Py Py

1f one introduces translational dynamical constraints, then (for a single
strip of photographs and using the simplifying assumption that the n ex-

posure times are perfectly measurable) the {X} vector (27) and A matrix

(31) become

{OE}

-

{96y}

{X} = (35)

{XyzpP}

14
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and

(A] = [[(A0E] [a¢6v] [AXYZP]]) (36)
where

OE

oL
OE = . = a set of six orbit elements defining the best

5 fitting orbit (for example, the initial orbit (37)
026 state vector(X , Y , Z , X , Y , Z).
o? Yo* Tat Ta’ "o’ .e

and

e TS VP AR S R
R PN N N P21 iy e (38)
3(0E,, OE,, ..., OE)

If one introduces both translational and rotational dynamical constraints,
then (again, for a single strip of photographs), the {X} vector (27,35)

and the A matrix (31,36) become

OE}
%} = ( @E} (39)
{XyzPr}
and
[A] = [[AOE] [AAE] [AXxYZP]] (40)
where
AEl
aks
{AE} = ( . = a gset of six attitude elements defining the
5 best fitting attitude solution (for example,
the initial orientation state vector, ¢ , 6 ,
AE6 v b b b.) o o
& “AF 2T T3
and

(X % Y $ X N TRRTRE | e $ sas)
(AAE] = Fai Ty w TR s - s (41)
2(AE , AE,, ..., AE()

The above symbology may prove difficult to extrapolate to specific

situations, we therefore provide a simple prototype adjustment problem

15




as an illustration. It will also be evident that multiple strip (block) |
adjustment present no particular difficulties; independent dynamical

constraints are introduced for each strip of photography.

2.4.2 An Example Adjustment Problem Setup
Referring to Figure 3, an idealized block adjustment of 2 strips

containing 5 photographs each is considered. Six complete ground control

LU L]

points are indicated by ".", 19 pass points are located at each "."

and under each photo's principal point ("+"). Thus, in this idealized

adjustment problem, each of the ten photographs has at least one control

point; photos 2, 3, 4, 7, 8, and 9 have a total of 9 measurable points

(108 measurements), while photos 1, 5, 6 and 10 have 6 measurable points
| (48 measurements).

We first consider the classical approach in which no dynamical con-

E, straints are imposed. The total number of equations (one for each measur-
ment) is
# of photos E
2 z [measurable points in photography] = 2[6+9+9+9+6+6+9+9+9+6]
j=1 = 156 (42)

The number of unknowns associated with the 19 pass points is

# of elements in {XYZP} = 3 x 19 = 57 (43) !
J The number of unknown camera exposure station coordinates is

A # of elements in {XYZC} = 3 x 10 = 30 (44)
The number of unknown orientation coordinates is

# of elements in {¢6¢} = 3 x 10 = 30 (45)

Therefore, the total number of unknowns (without dynamical constraints)

is 57 + 30 + 30 = 117.

16
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Fig. 3 An Example Triangulation Block of 2 Strips of 5 Photo-
graphs Each (6 complete ground control points are de-
noted by ©, the 10 camera exposure points are indicated
by +, 19 pass points are located at the * and + symbols,
50% overlap is assumed along each strip)
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The structure of the [A] matrix for this example (without constraints)
is graphically illustrated in Figure 4. The left, middle, and right parti-
tions of Figure 2 correspond identically to the partitions of Equation (35).
The shaded areas are the nonzero entries.

We now consider the changes which occur in the structure of the partial

derivative matrix when translation (orbital) constraints are incorporated.

Since two orbital arcs are present, then one dynamical (best fitting) solu-
tion will be recovered for each strip. Thus, we '"trade" the 30 unknown
elements in the {XYZC} array for 2 x 6 = 12 unknown orbit elements in a

12 x 1 {OE} array, thereby reducing the total number of unknowns to 117-
18 = 99. The [A] matrix, now modified to reflect the translational con-
straints is shown in Figure 5. Comparison with Figure 2 reveals that only
the left-most partition of elements is modified, but that considerable
(60%) compression of this partition has been achieved. Not considering
exposure times to be perfectly measurable would result in 10 additional
adjustable parameters (109 unknowns) and a 27% compression of the first
partition of [A].

We finally consider the structure when both translational and rota-

tional constraints are imposed. We exchange the 30 unknown orientation
parameters for 2 x 6 = 12 unkonwn orientation elements (1 set of six for
each of the 2 strips). The [A] matrix, sketched in Figure 6 now shows a
60% compression of the center partition (the total number of unknowns is
now 117 - 36 = 81). This 60% compression of the center partition is
achieved even if one must also recover the n exposure times, since these
times would have already been included in incorporating the orbital -l
constraints. In practice, however, the quality of the gyro data and T1
auxillary attitude measurements will dictate whether or not this theo-

retical truth results in improved or degraded precision. The simulations

18 -
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NO DYNAMICAL CONSTRAINTS
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make a weak case for increased accuracy, but a strong case for increased

computational efficiency.

2.5 Sequential (Kalman Filter) Approach to Dynamically Constrained
Triangulation

2.5.1 The Extended Kalman Filten ALgorithm

Given a system described by nonlinear equations of the form

X = F(t,X) + v, (42)

with measurements modeled by

Y = GX) + Vy (43)

where Vx and Vy are Gaussian noise vectors with zero mean; it is assumed

Vx and V_are uncorrelated.

If a sequence of measurements are available

{tl, Yl, tys Yz, « e e b Yk’ " o

Then the extended Kalman estimation algorithm (see ref. 10) is defined

by the recursions

Kert Cern) = Keltieg) + Kty Mgy = 6F (e D)) i

where

ik(tk+1) = forward *nonlinear) integration of Equation (42) from

Xk(tk)

¥ T T -1

K(tq) = Pt ) H(e ) [A o +H(g ) P(e ) B, )] (44b)
k+1 k+1

= Kalman Gain Matrnix

- °E
Pj(tk+1) = ¢(tk+l, tk) Pk(tk) ) (tk+1, tk) + Q (44c)
Pk+1(tk+l) = X - covariance matrix = [I - K(tk+1) H(tk+1)] Pk(tk+1) (444d)
H = [%%] = partials of the measured variables with respect to the

state vector (44e)

¢(t,tk) = nxn state transition matrix, the solution of the diiferential

equation

; - (32 ; -
¢(t’tk) il [ax] (b(t,tk), (p(tk’tk) 10 (loéf)

- A
Interpretation of subscripts: X (tk) = "the best estimate of X at
time tk based upon the first j data sugsets".
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Q = process noise covariance matrix variance of x - vector due
to the presence of the noise vector Vx in Equation (42).

2.5.2 Particularization of the Extended Kalman Estimation Algorithm
to the Constrained Triangulation Problem

The above algorithm can be applied to the constrained triangulation

problem by making the following definitions:

X
)t
Z
{OE} Y
-— z
X = state vector = {AE} = o (45)
e ¢
{Xyzpr} 0
¥
bX
b
g b’
_ z
i {XyzpP}
then
iE o F
F = %’E‘ = {{F) (46a)
' {0751
| with
! Y
‘ Z
{Foe} - -ux/r3 + x-perturbation T
—uy/r3 + y-perturbation
-uz/r~ + z-perturbation |
= |
E
o |
, A i
6
| ; ,
{Fae} = -—= (46¢)

o Qoo

| ——
€ o DeS-»

} = Equation (17)




X

1
y
Yk = the kth particular set of measured image coordinates x% (47)
of images appearing in the kth photograph Yy
. )k

H(tk) = all pairs of Equations (1), one pair corresponding to each
image measured in the kth photograph.

(28, _ 2H oH oH 3H oH ]
X a(x,y,2z) 9(x,y,z) 9(9,0,y) 3(bx,by,bz) JI(XYZP)
L 5H 3H 3H
= By © 3(6,6,9) ° 3 (XYZP) | (5B
[%%ijszy] = partials of Equations (1) w.r.t.(Xc,Yc,Zc)
[%%ETBTETJ = partials of Equations (1) w.r.t.(¢,6,y)
[%%EYEFY] = partials of equations (1) w.r.t.(Xp,Yp,Zp)
i i
{Fgg} B{Foe} B{Foe} 3
£F 1 3{0E}  9{AE}
34 -5 2 F
{0} ae} o{ ae} 0
oF i 3{0E} 3{AE}
[Si = = (49a)
{ OE}
——m L 0 Q.
3! {_AE}
{XYzP}
6x6 3x3 3x3
flicel, . O it
[a{OE} 1=1[g 0] el
x2-r%/3) xv Yz
[G] = < XY (Yz—rz/e) YZ + oribtal (49c¢)
r5 2 erturbations
XZ YZ (r“-r°/3) P
a{Foe}

3{AE}

a{Fae}
3{0E}

= [0] + perturbations

24

= 0 [zero unless orbital perturbations which depend upon
attitude drag, are included in the force model]
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a(F, )} 3(5,6,¥,b ,b ,b) 3(6,8,0) 2(4,0,)
Ay = [3(¢,9.w,bx,by,bz)] = | 3(¢,6,¥) a(bx,by,bz) (494d)
0 0

[%%%*%‘i%] = partials of Equations (17), w.r.t. (¢,6,¥)
b} ’
[a $,8,1) ] = partials of Equations (17), w.r.t (b_,b ,b)
B(bx,by,bz) e i x" y* g
1 1
Q ! J 0
R
Q = Q, ! = Process Noise Matrix (50a)
i i
A b Yovze
6x6
QO =0
6x6
i
iy <0 o a (50b)
gyro o
Qeyze = ©

The above algorithm is applied to a dynamically constrained triangulation
problem in section 4.0.

It should be noted that the {XYZP} vector includes only the particular
coordinates of the points measured on the k + 1th photograph; thus the
computer program requires careful 'bookkeeping' which dynamically alters
this array and the associated matrices in the Kalman filter algorithm to
remain consistent with the (k + 1)th set of elements of {XYZP}.

The Kalman algorithm conve:rgence history (ref. 10) leads to
the conclusion that the above algorithm should be interated through
all measurements at least two or three times to obtain the best estimates.
In the absence of process noise (from gyro measurements), Junkins (10)
has demonstrated numerical equivalence between the iterated Kalman
algorithm and the batch least squares algorithm. The presence of process
noise, however, precludes a rigorous application of the batch least squares
algorithm and thereby leaves the sequential Kalman algorithm as the

only practical alternative.

25

| ——




3.0 BATCH TRIANGULATION EXAMPLES
3.1 Example 1l: Torque-Free Case

In this example, we consider an uncontrolled satellite moving in
a 100 mile circular orbit. Two-body orbital dynamics are assumed. The
rotational dynamics is assumed governed by Equations (12) and (13) with
Lx = Ly = Lz =0 (i.e., a rigid spacecraft, subject to zero external
torque). Equations (12) and (13) have analytical solutions for this case,
and analytical solutions for all required partial derivatives have been
derived (see Ref. 7 and 8). For purposes of illustration, a short
strip of photography was simulated; corresponding to four photographs
made by a camera fixed in a rigid triaxial satellite from a 100 mile
circular orbit. Two-body translational motion and torque-free rotational
motion were assumed. A single strip of four photographs, each with
approximately 50% overlap was generated. These photographs covered a
ground strip of approximately 100 miles by 250 miles.

Four control points and eight pass points were chosen on the ground
strip and distributed in such a fashion as to give a total of 60 obser-
vation equations. The image coordinates were modified to simulate 1 mil
measurement precision. It was further assumed that the camera focal length,
f, the principal point offset (xo,yo) and the camera exposure times were
perfectly known. Initial guesses of the pass point coordinates and
camera center coordinates were corrupted from their true values by an
average of 2 miles. Initial guesses on camera axes Euler angles were
corrupted by an average of 1.5°.

Three separate least squares differential correction programs were
written to illustrate the impact of dynamical constraints:

UCPHOTO (unconstrained photogrammetry): all parameters appearing in

the observation equations were treated as independent. The dimensions




of the A matrix* were 60 (observations) x 48 (parameters), where

48 = 3 times the number of pass points plus 3 times the number of camera
center locations plus 3 camera axes Euler angles at each exposure time

= 3(8) + 3(4) + 3(4).

OCPHOTO (orbit constrained photogrammetry): pass point coordinates, camera
orientation at each time and orbit initial conditions were considered
independent. The A matrix was dimensioned 60 (observations) x 42
(parameters), where 42 = 3 times the number of pass points plus 6 orbit
initial conditions plus 3 Euler angles for each photograph = 3(8) + 6 +
3(4).

DCPHOTO (fully dynamically constrained photogrammetry): pass point
coordinates, orbit initial conditions and attitude initial conditions
were considered independent. The dimensions of the A matrix were 60
(observations) x 36 (parameters) where 36 = 3 times the number of pass
points plus 6 orbit initial conditions plus 6 attitude initial conditions
= 3(8) + 6 + 6.

The structure of the A matrix for these three cases is shown in
Figures 7a, 7b, and 7c, respectively. The shaded region contains the non-
zero elements. The essential results of these numerical tests were
summarized in Table 1. For this simple problem the best results were
obtained using full dynamical constraints. (Even though the dimension
of the A matrix was reduced from 60 x 48 to 60 x 36, the computer run
time was not decreased). This is because the matrix inversion savings
were offset by the relatively elaborate dynamical model. The matrix
calculations, however, dominate real world triangulation problems.
Consequently, substantial cost reductions may be achieved in practical

applications.
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Max pass pt error Mean pass Std. dev. CDC 6400
Program after convergence point error of all central processor
(true - converged) (ft) errors (ft) time (sec)
(ft)
UCPHOTO 205.08 12.24 73.58 5.82
OCPHOTO 93.45 -6.36 37.47 5.66
DCPHOTO -57.88 -1.60 25.54 6.86

Table 1 A comparison of the effects of dynamical

constraints on photogrammetric triangulation.

3.2 Example 2: A 10 Photo Strip (Via Batch Least Squares Triangulation)

This example is similar to the DC Photo example above, except in
two respects: (1) instead of assuming zero torque and using the analytical
solution of Ref. 7, the Euler differential equations were integrated
with the true torque history specified, (2) the number of photos in
the strip was increased from 4 to 10 to provide more realistic dimensions
for the demonstration.

138 simulated measurements were calculated for a total of 69
photographic images of 10 control points and 25 pass points. The simu-
lated measurement errors were initially set to zero to verify that the
converged solutions (from a wide variety of starting estimates) re-
covered true angles and position coordinates to acceptable precision (all
angles were recovered to within 1 arc sec and all camera and pass point
coordinates recovered to within .15 ft.). In particular, Tables 2 and
3 summarize the pass point coordinates' starting estimates, converged
values, and true minus converged residuals in miles; analogous results
are recorded in Table 3 for the orbit and attitude state variables.

This example required approximately one minute of central processor run
time, over half of which was spent manipulating and inverting matrices

(as opposed to integrating the equations of motion).
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This example, albeit for an idealized case, demonstrates clearly the
validity of the dynamically constrained approach for the case that the
actual torque history can be accurately modeled. However, this restriction,
along with the rigid satellite assumption are, in fact, major obstacles
in practical applications. To circumvent the necessity of modeling
torques and making idealizing assumptions regarding satellite rigidity,
we incorporate angular rate gyro measurements. The availability of
angular rate measurements permits the luxury of not modeling torques
or body flexibility [in order to correctly generalize Equations (12)],
rather, one directly integrates Equation (17). This approach leads to
two algorithms (batch and sequential), which are applied to example

cases below.
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Batch Least Squares

TABLE 2

Pass Point Solution Summary for Example 2

N< X NY

N < X

X
¥
z

Starting Converged
Value (miles) Value (miles)
1.000000 0.000004
10.500000 10.000006
3962.400000 3963.399997
-37.000000 ~-38.999998
40.000000 39.000004
3962.000000 3963.000002
-12.000000 -10.000004
42.000000 41.999995
3962.000000 3962.500025
44.000000 45.000004
431.000000 429,999995

3941.000000 3940.49981

Notes on error statistics:
*Mean error (over all 25 pass points) = .0001 ft.

*RMS error (over all 25 pass points) = 0.05 ft.

Converged Minus

True Residual (ft)

+0.02
+0.03
-0.02

+0.01
+0.02
+0.01

-0.02
-0.03
+0.13

+ .02

- .10

*Convergence was achieved from the starting values shown in 4
differential corrections.
*For brevity, only 4 of the twenty-five pass point coordinates are

shown.

*Since perfect measured values were used in this example, the above
small residuals simply reflect the fact that (a) the algorithm
has been correctly inplemented, and (b) adequate precision and
convergence tolerances were employed.
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TABLE 3

Batch Solution Summary for Initial Orbit and Attitude
State Variables (Example 2)

Starting

Value
X, 0.004200 miles
. 4 0.002700 miles
z, 4062.181900 miles
X, -0.000160 miles/sec
8 4.911200 miles/sec
z, -0.000100 miles/sec
¢o -0.000042 rad.
60 0.000100 rad.
?o 0.000028 rad.
?o -0.002100 rad/sec
90 0.000150 rad/sec
28 0.000910 rad/sec

Notes:

Converged

Value

0.003801
0.000702

4063.181898

-0.000060
4.851200
-0.000160

-0.000020
0.000000
0.000030

-0.001100
0.000100
0.000990

niles
miles
miles
miles/sec
miles/sec
miles/sec

rad.
rad.
rad.
rad/sec
rad/sec
rad/sec

Converged Minus
True Residual

005 ft.
.01
-.01
.00
.00
.00

0
0
9
0
0
0

£,
ft.
ft/sec.
ft/sec.
ft/sec.

arc sec
arc sec
arc sec
0 rad/sec

0 rad/sec

-0.00 rad/sec

These values correspond to the same converged solution (after 4
corrections) as the pass point summary of Table 2.
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3.3 Example 3: A Batch Estimation Example Using the
Direct Rate Integration Approach

This example is very similar to example 2, except the rotational
dynamical model consists of equation (17) [instead of equations (12)
and (13)]. The true angular rate history was assumed perfectly measured
by rate gyros and then integrated by 4-cycle Runge-Kutta. Instead of
the Example 1 and 2 "attitude elements" {¢co(to),eco(to),wco(to);
mx(to),my(to),wz(to)}, we successively improve instead the initial
orientation angles {¢Co(to), eco(to),wco(to)} and the gyro bias parameters
(bx’by’bz)' The numerical results were identical to Example 2, this
test serves only to indicate the valididty of the basic idea. This
example was repeated, using perfect gyro data but imperfect image
coordinates (with 1 mil measurement error variance). The converged
pass points differed from their true values by an average of 1.8 ft.
with a standard RMS error of 28.9 ft.

In real applications the effects of gyro bias and noise must also
be considered. Thus, the final example of section 4.0 uses simulated

gyro data (including bias and noise) a sequential (Kalman filter)

estimation algorithm.
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4.0 EXAMPLE 4 SEQUENTIAL TRIANGULATION SUBJECT TO DYNAMICAL CONSTRAINTS.

Based upon the formulation of section 2.5.2, a Kalman sequential
triangulation algorithm has been developed. The 10 photo strip of
examples 2 and 3 is selected as a basis for discussion and comparison of
results. This particular computer program involves a significant amount
of book-keeping to dynamically restructure the various matrices to
correctly reflect the set of pass point coordinates being estimated on
each cycle. As of this writing, this algorithm is still under develop-
ment and test; it is anticipated that this work will culminate with
successful numerical demonstrations in a few months. Although this
particular portion of the work was in addition to the central objectives
of this research project, the authors feel carrying it to completion
will be a valuable contribution. This work will thus be discussed in a

subsequent report, upon completion of the computational aspects.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

This report details several approaches to the dynamically con-
strained triangulation problem. The formulations are applied to obtain
numerical results for several cases. These results support the following

conclusions:

(1) The most attractive method studied for batch triangulation is
the direct rate integration approaches, as discussed in
sections 2.2 and 3.3.

(2) The sequential (extended Kalman filter) approach, discussed
in sections 2.5 and 4.0, appears more attractive if

(a) process noise (due to, for example, integration of
noisy gyro measurements) are degrading the solution
to a considerable degree, and/or

(b) extremely long strips of photography are being tri-
angulated.

We recommend that future refinement development of triangulation

software include dynamical constraints in one of the two above fashions.
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APPENDIX A

COORDINATE FRAME NOMENCLATURE AND KINEMATICAL RELATIONSHIPS

Important to any complex angular motion problem is the choice of
orientation parameters and a clear, systematic nomenclature convention.
The choice of orientation parameters is critical in that numerical
difficulties may be avoided entirely or at least relegated to attitudes
which will never occur in the problem at hand; a self-evident nomen-
clature is useful (particularly when several coordinate systems are
defined) not only to readers but to the investigators themselves.

Throughout this research effort, Euler angles have been utilized
for coordinate frame orientation. It is a well-known fact that each of
the twelve possible Euler angle sets possesses a kinematical singu-
larity. In order to render the singularity problem as harmless as
possible, the Euler angle sequence for a given coordinate frame relative
orientation has been selected so that encountering the singular orien-
tation is highly unlikely. Future efforts could profitably involve the use
of a four parameter orientation description (such as Euler parameters)
so as to avoid the singularity problem entirely.

Unless there are reasons to the contrary, the 1-2-3 Euler angle
sequence will be employed for simplicity of discussion. For future
reference, the 3 x 3 transformation matrix [DE] orienting a frame D
characterized by the orthonormal vector set

d

=i

() = {4, (A.1)
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relative to a frame E characterized by
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sw-mm,,m..-.,.. PR = TP

e

1
{e} = (e, (A.2)
23
has the form
cwde swde 0 cede 0 —s¢de 1 0 0
[DE(9,.504e%3e) 1 = |™5¥4e V4o © U 0 0 cby, sy, | (A.3)
0 9 o ¢de " c¢de -S¢de C¢’de
where ¢de’ede’ and wde are the 1-2-3 Euler angles shown in Fig. 4 and
cede = cosede, sede = sinede, etc. The relationship between the two

frames is compactly written as the matrix product
I Obtainable from an elementary kinematic analysis of the frames displayed
in Fig. A4 is the following matrix expression for the components (along

the {d} unit vectors) of the angular velocity of frame D with respect to

frame E:
o, "E OgeVie Ve O (%ae
| wZD/E = -cedeswde dee 0 éde (A.5)
w3D/E Sede s = ide

Finally, both members of Eq. (A.5) may be premultiplied by the inverse of
the 3 x 3 matrix on the right hand side to obtain expressions for the time

rates of change of the Euler angles:

| : D/E D/E
L | Pge €¥ie “5¥ e 0 W« wy
; e D/E( _ D/E
ede cede cedes‘pde cedewde 0 - [B(ede’wde)] 2 (a.6)
. D/E D/E
Vde 8%3e°Vde %%eVde “Pdell¥3 i w3

Contained in the above discussion are sub-and superscript conventions
which, while appearing unnecessary in this simple context, will be utilized to
great advantage in conjunction with the several coordinate frames about to

be introduced.
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Fig. Al:

A 1-2-3 Euler Angle Transformation
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We now turn to the first of the specific coordinate frames selected
for use in the present problem. The inertial frame N (see Fig. A.2) is
non-rotating and geocentric; it forms the basis for the on-board star
catalog (if on~board star sensing capability exists) and is character-

ized by the unit vector set

n = (n (A.7)

An "orbit inertial" frame 0' (see Fig. A.2) is defined by the unit

vectors
r
ol = 2
=3 r
o z
I, X I,
Vo= < .8
2 r x| {A.8)
-0 = =0
[ PO '
24 = 8n X 84

where the subscript o denotes initial conditions. The {o'} unit vectors
are projected onto the {n} unit vectors by the direction cosine matrix
[0'N] as

{o'} = [0'N]{n} (A.9)

The nine constant elements of [0'N] are calculated from the orbit state

vector by
xo
' Al i
gl R
o
y
' . s
0 N32 r
o
zo
' o]
0'B33 = 3
o
hy
' .
b St - (A.10)
h
2
' o
l? Tt
h
3
' g
7 Bl -
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' =0 ] -0 '
0y = B0y = R0 Ny,
' =0" ' -0 '
0" Mya & 0Ny 07N,y = 0N, 0 N
' =0" ' -0 '
0Ny ® 070,00, ~ 0 N Moy
where h1 = (yozo - zoyo)
h2 8 (zoxo ¥ xozo) (A.11)
h3 e (xoyo g yoxo)
S 2 2 2.1/2
h (h1 + h2 + h3 )
The orbit frame 0O (see Fig. A.3) rotates about gé, the orbit normal,

with the constant angular velocity (relative to N or 0')
1]
wO/N - m0/0

= ' =
0, = Q0,, (A.12)

where @ is given by

2m 2n_ 3/2 (A.13)

Q= = a .
(orbit period) Jor

GM is the earth gravitational-mass constant and a is the semi-major axis

of the orbit. The {0} unit vectors are written in terms of the {o0'} unit

vectors by
{o} = [00"(t)]{0"}, (A.14)
where
cos[Q(t - to)] 0 -=-sin[Q(t - to)]
[00'(t)] = 0 1 0 (A.15)
sin[Q(t - to)] 0 cos[o(t - to)]
Substitution of Eq. (2.9) into Eq. (2.14) yields
{o} = [00'(t)][0'N]{n} (A.16)
The next coordinate frame (G) considered is one attached to the
strapped-down gyroscopic assembly and hence body-fixed but not nec-
essarily principal. The G frame is generally considered to be the pri-
mary spacecraft axes. The unit vector set {g} of Fig. A.3 is charac-

terized by By being the roll axis (nominally along the velocity vector),
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Fig. A3: The Orbit Frame O and Gyroscopic Frame G
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-9} being the pitch axis (nominally along the orbit normal), and -5 being
the yaw axis (nominally along the radius vector). The 1-2-3 angles ¢go’
ego, and wgo orienting G relative to 0 are hence normally small, thereby
avoiding the kinematical singularity at ego = 90°, The {g} unit vectors

are projected onto the {o} unit vectors by

{g} = [GO(¢go,6g°,wgo)]{gJ. (A.17)
Utilizing Eq. (A.16):
{g} = [co][00'][0'N]{n}. (A.18)

We now introduce the frame C associated with the terrain camera fields-

of-view. Frame C is characterized by €3 being along the field-of-view

boresight, with < cg

and wcg orient the {c} unit vectors relative to {g} via the 3-1-3 rotation

and <y being image plane axes. The angles ¢cg’ )

{c} = [CG(¢cg,ecg,wcg)]{gJ (A.19)
= [CG][GOo]{0} (A.20)
= [cG][co][00"]{0"} (A.21)
= [CG][GO][00"][0'N]{n}. (A.22)

A 3-1-3 sequence has been chosen for this orientation interlock, with the
nominal values

(¢ .wcg) = (0°,0°,0°). (A.23)

cg’’cg
The orientations prescribed in Eqs. (A.23) will generally be subject to
manufacturing misalignments and, in orbit, will likely be subject to
thermal cycling variations of a few arc minutes (these effects, while
important in applications, are not treated here; we note that their
effects can be absorbed into slightly aliased biases, which are sequen-
tially updated).

Finally, we introduce an "orbit C frame", designated C', which is

coincident with frame A at the initial time co' but which thereafter

rotates about the orbit normal 9, = gé with the constant angular velocity
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1) ' 1
LN 0

' =
2 Qo,. (A.24)

Frame C' represents the nominal position of camera frame C and is oriented

=92

relative to frame 0 via

{c'} = c'o(s,.

c o.ecno,wcuo)]{g}- (A.25)

Where the 1-2-3 Euler angles ¢c'o’ ec,o, and wc'o are constants (nominally
zero). The relationship between the frames C and C' is given by
{S} - [Cc'(¢ccv ’ecc! ,ch.)]{g'}, (A.26)

wherein the three 1-2-3 angles ¢cc" 6 ,, and wcc' are normally small.

cc
Table Al summarizes the coordinate system definitions and relationships

discussed thus far.

The interlock angles (¢cg' ecg, wcg) will vary about their nominal

calibrated values due to thermal cycling or any other structural de-
formation. The maximum amplitude of such variations is believed to be a |
few arc-minutes. We have not yet structured the estimation algorithms
to provide updates of the interlock angles (¢cg’ ecg, wcg). It is
believed that noise in typical rate data (around one arc-sec/sec) is too
large to allow significant refinement of (¢cg’ Bcg, wcg). As is noted

in Section 4, these interlock angles are correlated with the estimated

rate bias parameters, a fact which also hampers accurate estimation, but

also makes their recovery less important; small interlock angle errors
can be very nearly accounted for by absorbing these errors into slightly
aliased rate biases (which, in themselves, are not of crucial importance).
Useful for consideration in incorporating attitude dynamical
constraints are the time rates of change of various Euler angle sets in
terms of the inertial angular velocity components of frame G. Speci-

fically, we will develop expressions for
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(1) (b .6 % )

gn- gn gn
(2) (6,00, 00,0)
(3) (¢go go.wgo>
ORI N R

The relationships for the time rates of change of the angles

¢ , 6 , and wgn follow directly from the form of Eqs. (A.6):

gn’ “gn

2 G/N G/N

¢gn cwgn swgn 0 g "

: 1 G/N{ _ G/N

egn cegn cegnswgn cegncwgn 0 wy [B(egn,wgn)] Wy - (A.27)
¥ s8¢y s6 cy ch 0, 6/N . /N

gn gn ' gn gn 'gn gn 3 3

Note that egn, for the case of a near circular orbit and one vehicle
rotation about 8y per orbit, will go to 90° twice per orbit, causing
cosegn to vanish with a resulting singularity in Eqs. (A.27).

The relationships for the time rates of change of the angles ¢cn’

6 , and ¢ can also be obtained from Eq. (A.6):
cn

cn

4;cn le/N
| RS CICIR IO I e (A.28)
E ¢cn w3G/N

The factor of [CG] on the right side of Eq. (A.28) is necessary to convert
the miG/N from components along {g} axes to components along {c} axes. Due
to the form of the matrix B (defined in Eq. (A.6) and repeated in Eq.
(A.27), singularities would occur twice per orbit for a vehicle which

] rotates about g, once per orbit. Hence, although fairly simple in form,

‘ Eqs. (A.27) and (A.28) share similar difficulties.

! We now proceed to develop equations analogous to (A.27) and (A.28)

for the angles (¢go, 980’ wgo) (Case 3). The angular velocity of G

relative to N may be written as
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wG/N = wG/0 + w0/N (A.29)

e 0 A R PRI A . S

(1) s (2) ?
: d 3 . gogl + egoo_2 + wgo + 992, (A.30)

where the parenthetical superscripts indicate intermediate frames in the

0 to G transformation. Expressing gl(l), 92(2), and 92 in terms of 31,

By» and -5 enables one to equate coefficients of like unit vectors,

o g
“’1“/“3 + sz/N& + w G/N& = ¢

resulting in three scalar equations which have the matrix form

. G/N

¢go wy cogoswgo + s¢gosegocwgo E_

égo = [B(6_ L,y )] o CIn -2 \ct cy - sp sb sy (A.31) :
go’"go 2 go 'go g0 go 'go L

. G/N b i

wgo wq s¢gocego ;

For the case of one vehicle rotation about 8, per near circular orbit,
the angles ¢go’ ego, and wgo remain small so that Eqs. (A.31) are non-

singular and nearly linear (important in the implementation of estimation

algorithms).
To develop the Case 4 equations for ¢cc" ecc., and icc" we begin
with
L} L
wG/N = QF/C + wc /N. (A.32)

Proceeding in a manner analogous to that outlined for Case 3, we arrive at

. G/N
[ S W, /
C G
Boany = 1B 1y ¥ o)1 1660010 vy {0, Y
. 3 G/N
cc' 3
oo oo ' s¢cosecocwco)
— Q[C'O(d’c'o’ec'o""c'o)] oo Veo ~ *¥e0®%co®™eo) (A.33)
"o o %
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Like Eqs. (A.31), Eqs. (A.33) are more complex than Eqs. (A.27) or (A.28)
but affer the advantages of near linearity and no singularities for the

case of one vehicle rotation about 8, per orbit.




Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

T. REPORT NUMBER 2. SOVY ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitie)

ORBITAL PHOTOGRAMMETRIC TRIANGULATION

WITH DYNAMICAL CONSTRAINTS

S. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
John L. Junkins
Mahesh Rajan
James D. Turner

8. CONTRACT OR GRANT NUMBER(s)
DAAG29-77+0018 ,/

DAAG29-78-0043

PO

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Engineering Science and Mechanics Department
Virginia Polytechnic Institute and State Univ.

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 3 WORK UNIT NUMBERS

March 1979

____Blacksbu;gr.ﬂA— 24061

11. CONTROLLING FICE NAME AND ADDRESS

U. S. Army Research Office

P. ©. Box 12211

Research Triangle Park, ..C 27709

12. REPORT DATE

13. NUMBER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Otfice)

1S. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

8. SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

Triangulation, Estimation, Photogrammetry

\

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

20. A.ﬁRACT (Continue on reverse side Il neceseary and Identify by block number)

is investigated.

The concept, implementation, and results of incorporating spacecraft
motion constraints into the process of triangulating orbital photography
Feasibility and desirability several approaches to this
problem are established relative to conventional unconstrained triangulation.

/)

EDITION OF | NOV 65 15 OBSOLETE

DD , 28", 1473

50 unclassified

CEFIIBITY I ARRIFICATIAN AF TUIS PAGF /Whan NData Rntarad)

ey

e







